Digital Circuits ECS 371

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 11

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

ECS371.PRAPUN.COM

Announcement

- HW4 posted on the course web site
 - Chapter 5: 4(b,c,e), 20a, 22a, 56
 - Write down all the steps that you have done to obtain your answers.
 - Due date: July 16, 2009 (Thursday)
- Reading Assignment
 - Chapter 6: 6-5, 6-8, 6-9

SSI

Example of Data Sheet

Signals and Their Active Levels

- Each input and output in a logic circuit should have a descriptive alpha-numeric label, the signal's name.
- A signal is **active high** if it performs the named action or denotes the named condition when it is HIGH (H) or 1.
- A signal is **active low** if it performs the named action or denotes the named condition when it is LOW (L) or 0.
- If not specified, assume active-high signal.
- A signal is said to be **asserted** when it is at its active level.
- A signal is said to be **negated** (or, sometimes, **deasserted**) when it is not at its active level.
- A **bus** is a collection of two or more related signal lines.

Simple Decoder

A **decoder** is a logic circuit that detects the presence of a specific combination of bits at its input.

	Inp	out		Output
A ₃	A_2	<i>A</i> ₁	A_0	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Two simple decoders that **detect the presence** of the binary code 0011 are shown below. The first has an active HIGH output; the second has an active LOW output.

Active-HIGH decoder for 0011

Active-LOW decoder for 0011

	Inp	out		Output
<i>A</i> ₃	<i>A</i> ₂	<i>A</i> ₁	A_0	X_L
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(A₀ is the LSB and A₃ is the MSB)

Binary-to-Decimal Decoder

- The input has *n* bits
- The output has 2^n bits. Only one bit is asserted at any time.
 - Also known as "1-out-of-*m*" (where $m = 2^n$)
- Zero or more EN (enable) lines

4:16 Decoder

	Inp	out			Output														
l ₃	I_2	I_1	I ₀	O ₁₅	O ₁₄	O ₁₃	O ₁₂	O ₁₁	O ₁₀	O ₉	O ₈	O ₇	O ₆	O ₅	O ₄	O ₃	O ₂	O ₁	O ₀
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: All signals here are active-HIGH.

4:16 Decoder with Active-LOW outputs

	Inp	out			Output														
I ₃	l ₂	I1	I ₀	O ₁₅ _L	O ₁₄ _L	O ₁₃ _L	O ₁₂ _L	O ₁₁ _L	O ₁₀ _L	0 ₉ _L	0 ₈ _L	0 ₇ _L	0 ₆ _L	05_L	O4_L	0 ₃ _L	0 ₂ _L	01_L	0°_L
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Binary-to-Decimal Decoder

The binary-to-decimal decoder shown here has 16 outputs – one for each combination of binary inputs.

4:16 Decoder with EN

	Ir	put	:			Output														
EN	l ₃	l ₂	I_1	I ₀	O ₁₅	O ₁₄	O ₁₃	O ₁₂	O ₁₁	O ₁₀	O ₉	O ₈	O ₇	O ₆	O ₅	O ₄	O₃	O ₂	O ₁	O ₀
0	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: All signals here are active-HIGH.

4:16 Decoder

(Active-HIGH EN) Active-LOW output

		Input				Output														
EN	l ₃	l ₂	l ₁	lo	0 ₁₅ _L	O ₁₄ _L	0 ₁₃ _L	0 ₁₂ _L	O ₁₁ _L	O ₁₀ _L	0 ₉ _L	0 ₈ _L	0 ₇ _L	0 ₆ _L	0 ₅ _L	O4_L	0 ₃ _L	0 ₂ _L	01_L	Oº_L
0	Х	Х	Х	Х	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
1	1	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
1	1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

4:16 Decoder

Active-LOW EN Active-LOW output

		Input				Output														
EN_L	l ₃	l ₂	\mathbf{l}_1	lo	0 ₁₅ _L	O ₁₄ _L	0 ₁₃ _L	0 ₁₂ _L	O ₁₁ _L	O ₁₀ _L	0 ₉ _L	0 ₈ _L	0 ₇ _L	0 ₆ _L	0 ₅ _L	O4_L	0 ₃ _L	0 ₂ _L	01_L	0°_L
1	Х	Х	Х	Х	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
0	1	0	1	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

O11N

O12N

O13N

014N

015N

DECODER

inst

D-

D-

D-

n

D

Include two **active-LOW** chip select (CS) lines which must be at the active level to enable the outputs. These lines can be used to expand the decoder to larger inputs.

What do you need to know?

- On the exam/quiz/hw, when you see a logic symbol, you should be able to write down the following items on your own:
 - The description of its function.
 - The truth table.
 - The logic diagram.

Logic Diagram for 2:4 decoder

2-to-4 line decoder with enable input

lr	nput	s	Outputs							
Е	11	0	Υ	Υ	Υ	Υ				
Ν	· · ·		3	2	1	0				
0	Χ	X	0	0	0	0				
1	0	0	0	0	0	1				
1	0	1	0	0	1	0				
1	1	0	0	1	0	0				
1	1	1	1	0	0	0				

74x139: Dual 2:4 Decoder

Most MSI decoders were originally designed with active-LOW output.

- Two independent 2:4 decoders
- The outputs and the enable (E) input are active-LOW.
- When E_L is HIGH all outputs are forced HIGH.

V_{CC} = PIN 16 GND = PIN 8

	INPUTS	5		OUTPUTS								
E	A ₀	A ₁	00	0 ₁	0 ₂	03						
Н	Х	Х	Н	Н	Н	Н						
L	L	L	L	Н	Н	Н						
L	Н	L	н	L	Н	Н						
L	L	Н	н	Н	L	Н						
L	Н	Н	н	Н	Н	L						

Notice that all of the signal names inside the symbol outline are active-HIGH, and that bubbles indicate active-LOW inputs and outputs.

Example: Building a larger decoder

Construct a 3-to-8 decoder from two 2-to-4 decoders

Low order bits (A_1, A_0) select within decoders. High order bit (A_2) controls which decoder is active.

23

Building larger decoder from smaller ones

- To construct (k+n)-to- 2^{n+k} decoders, can use
 - 1. 2^n of *k*-to- 2^k decoders with enable input and
 - 2. one *n*-to-2*n* decoders.
- The connections are:
 - For each of the k-to- 2^k decoder with enable input,
 - all have k input
 - we put in $A_0 \dots A_{k-1}$.
 - The enable line of the r^{th} decoder is connected to D_r of the *n*-to- 2^n decoders.
 - The inputs of the *n*-to- 2^n decoder get A_k to A_{n+k-1} .
- Basically, each k-to- 2^k decoder works on the last k bits.
- We use the first *n* bit, via the *n*-to-2^{*n*} decoder, to select which one (and only one) of the *k*-to-2^{*k*} decoders will be enabled.

Example

Construct a 4:16 decoder with an active-LOW enable from three 2:4 decoders.

